Experimental humidity dependency of small particle adhesion on silica and titania.

نویسندگان

  • Matti Paajanen
  • Jukka Katainen
  • Olli H Pakarinen
  • Adam S Foster
  • Jouko Lahtinen
چکیده

The humidity present in ambient atmosphere affects the adhesion of small particles by causing capillary bridge formation between the particle and the surface. Even in moderate relative humidities this, usually attractive, force can have a significant effect on adhesion behaviour of micro and sub-micro particles. We have directly measured the pull-off forces of initially adhered oxide particles on oxide surfaces with atomic force microscope in controlled atmosphere with adjustable humidity. We demonstrate the effect of the surface roughness resulting in two different regions of capillary formation and the particle shape having a strong effect on the humidity dependency of adhesion. The experimental results are explained by theoretical framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-step Coating of Monodisperse Silica Spheres by Titania Nanoparticles Base on Electrostatic Attraction Strategy

TiO2-SiO2 core-shell particles include of monodisperse silica core and nanostructured titania shell were synthesized by a multi-step coating process. The monodisperse silica spheres were synthesized by Stöber method and titania shell was obtained of a colloidal sol prepared by a hydrolysis–condensation reaction. The titania sol was deposited on monodisperse silica spheres by a multi-step coatin...

متن کامل

PINTA – Clean Surface 2002-2006

The Control of small-particle surface forces and initial stages of surface oxidation (SURFOX) project focuses on the adhesion forces between small particles of oxide/silica and oxide or metal surfaces. The adhesion force between silica particles and a titania surface is at its minimum when the surface roughness of both materials is about the same. The goal of this first part was to understand u...

متن کامل

Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this...

متن کامل

Simulation of Forces between Humid Amorphous Silica Surfaces: A Comparison of Empirical Atomistic Force Fields

Atmospheric humidity strongly influences the interactions between dry granular particles in process containers. To reduce the energy loss in industrial production processes caused by particle agglomeration, a basic understanding of the dependence of particle interactions on humidity is necessary. Hence, in this study, molecular dynamic simulations were carried out to calculate the adhesion betw...

متن کامل

Synthesis and characterization of CdS nanoparticle anchored Silica-Titania mixed Oxide mesoporous particles: Efficient photocatalyst for discoloration of textile effluent

An efficient photocatalyst consisting of CdS nanoparticle dispersed mesoporous silica-titania was prepared using amphiphilic triblock copolymer P123 as template and silica-titania sol–gel precursors. The CdS nanoparticle was incorporated into silica-titania mesoporous nanosturctures by post impregnation method. The synthesized catalyst has been characterized by FTIR, TEM, SEM, and EDAX analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 304 2  شماره 

صفحات  -

تاریخ انتشار 2006